k^2-16k-20=0

Simple and best practice solution for k^2-16k-20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2-16k-20=0 equation:



k^2-16k-20=0
a = 1; b = -16; c = -20;
Δ = b2-4ac
Δ = -162-4·1·(-20)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{21}}{2*1}=\frac{16-4\sqrt{21}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{21}}{2*1}=\frac{16+4\sqrt{21}}{2} $

See similar equations:

| 6(-4-3r)=36-8r | | 8.6x=12.04 | | 44=4(1-3n)+2n | | 3x+2x^2-8x=0 | | 150=70+(15+7)w | | 3k-7k-14=44 | | -4(m+3=24 | | 3x-9=-129 | | 4x-21=-81 | | (x+1)^2/5-3(x+1)^1/5+2=0 | | 13m-2/7=-4 | | k^2+12k+37=0 | | x2+5x−7x2+5x−7x=2x=2. | | |-4v-7|+8=43 | | -30=-5a-(21+8a) | | -6x^2=-x+4 | | 3k-7k=44 | | 7-(4x-3)=1-5x | | x(1/3x-1)-6(1/3x+1)=1/3x^+x-6 | | 8b+11-3b=2b=2 | | 9=5s/2-s/4 | | 13x+(-5)=10 | | 5+n/10=20 | | 2x+(2x-5)+x=65 | | w/8+3=12 | | -7y-2+y+4=44 | | -2(b-2)=2-7b | | |2x+2|=10 | | 5*x+25=50 | | 250=70+9x | | 7a-a=-4+7a | | 4-8c=8 |

Equations solver categories